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integral equations and an application to potential scattering 
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Guelph-Waterloo Centre for Graduate Work in Chemistry, University of Guelph, Guelph, 
Ontario, Canada 

Received 17 August 1976, in final form 5 April 1977 

Abstract. We have formulated a simple method, the collocation variational method, to 
solve the Fredholm integral equations of the second kind and have proved its convergence. 
As applications, we have shown that the method can be usefully employed not only to solve 
the Fredholm equations, but also some other equations reducible to it, and, in particular, the 
Lippman-Schwinger equation in potential scattering. 

1. Introduction 

The problem of obtaining the solution f ( x ) ,  of the Fredholm integral equation of the 
second kind 

f(x)-A Iabk(x, Y M Y )  dY = g(x) (1) 

arises in many areas of mathematics and physics and, in particular, in the theory of 
potential scattering. Equation (1) can be written as a functional equation 

(1 -AK)f=g (2) 
in some function space H. We assume H to be the Hilbert space of square integrable 
functions of xi; i.e. g is square integrable and a square integrable solutionf of (2) exists. 

A simple method, the collocation method (Noble 1973), to solve (1) stems from the 
original considerations of Fredholm (Riesz and Nagy 1971). In this method one solves 
the following set of algebraic equations: 

where xi and j = 1 to n, are the roots and Weights of a suitable quadrature formula. 
For a compact K generated by a sufficiently smooth k(x ,  y), it has been shown that fi 
converge to f(xi), i = 1 to n. The approximate valuefCl(x) of f(x) at points other than xi, 
i = 1 to n, is usually obtained from (Kantorovich and Kirylov 1964): 

n 

j = l  
fi(x)=g(x)+A 1 ojk(x,yj)fi. (36) 

The equation (36) is naturally suggested by (1) itself. However, one may use any 
suitable interpolation formula to obtain an approximate value of f(x) (Noble 1973). 
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The Bubnov-Galerkin method (BG) (Mikhlin 1964) attempts to solve (2) by solving 
the following set of equations: 

where {Gi} is an orthonormal basis in H and ( 1 * ) denotes the scalar product in H. The 
approximate value f; off in this method is given by f; = Xy= I ai+j. For a compact K this 
method is known to yield a convergent process; i.e., f; # f  in the norm ( 1  * 11 of H 
(Mikhlin 1964). The operator norm in H will also be denoted by 11 * 11. 

Although both of these methods provide convergent procedures to determine f, 
from the computational point of view they both have some disadvantages. The rate of 
convergence of the collocation method is rather slow. As a result one needs to solve 
quite large matrix equations in order to achieve a reasonable degree of accuracy 
(Walters 1971, Holt and Santoso 1973), which is, in turn, compromised in dealing with 
these large matrices. On the other hand, the rate of convergence of BG is usually quite 
rapid, but at the expense of evaluating the double integrals which appear in the 
left-hand side of (4). The labour involved in evaluating these double integrals is usually 
too much to justify the use of BG in many realistic problems. For this reason, for 
example, the Schwinger variational method in potential scattering, which is equivalent 
to BG (Singh and Stauffer 1974), has been unpopular and the less satisfactory Kohn 
method is preferred (Mott and Massey 1965). 

For these reasons an intermediate method, which we shall call the collocation 
variational method (cv), has been found useful (Conkie and Singh 1969). In this 
method one takes a basis {+} in H and solves the following set of equations: 

and fr= &,+j is taken to be the approximate value of f. Computationally, the 
method is promising in that it appears to be almost as rapidly convergent as BG with the 
same basis set, and involves much less labour than either BG or the collocation method 
(Conkie and Singh 1969). However, no rigorous analysis of cv has been attempted yet. 
In the present paper we prove the convergence of cv in solving (1) and present some 
situations where the method can be usefully employed. 

2. The convergence of the collocation variational method 

Let C" be the n-dimensional space of column vectors with complex components and 
norm 11 - (In defined by (la((,, = ( X y = l  Iaj(2)1'2 for each a in C". The norm of an operator A 
on C", sup(ba(/,/l(a((,, will also be denoted by IBll,,. In the sequel we shall need the 
following well known results which are valid not only in C" but also in any other Banach 
space with obvious replacements of definitions (Mikhlin 1964). 

Result 1. Let A, E: C" + C", A-' exists and l(A-'e(l,, < 1. Then (A + E ) - '  exists and 

As a simple consequence of this result, the following result is obtained. 
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Result 2. If Aa = p, where p is in C", has a solution, then (A + E)G = p + S,where S is in 
C", also has a solution. 

From these two results one also has the following third result. 

Result 3. Let em, SI be the sequences of matrices and vectors respectively in C" such 
that ( I E ~ [ I , ,  - 0 and (ISI(I,, - 0, then (A +em)GmI = p +SI  has a solution 
for sufficiently large m and each 1 and l l&mi-a l ln  - 0. 

m +w m +w 

m,l+m 

Now (4) can be written as a matrix equation in C" as follows: 

(1, -AB)a =/3 (6)  
where 1, is the n x n unit matrix, B is the matrix with elements (B)ij = (+ilK+j), 
i ,  j =  1 to n ;  a,@ are vectors in C" with components ai and (&Ig), j =  1 to n, 
respectively. It is easy to check that limn+w 11(1n -AB) - ' l In  = 11(1 -AK)-'ll, i.e. 
(ln-AB)-' remains bounded in the limit of large n. Consider the following set of 
equations: 

b 2 +T(x/c)wk(+j(xk)-A k(Xkt Y ) + j ( Y )  dY)Gj = k = l  2 + T ( X k ) W k g ( X k )  (7) 
j .k = 1 

where x k  and Wk are the roots and weights of some 'reasonable' numerical quadrature 
formula by which we mean that lj: f(x) dx - 2; = W k f ( X k ) I  S M / n  I+', M < a3 and E > 0. 

Equation (7) can aso be written as: 

J +  W(J - A C)G = J' WG (8) 

where J is a matrix with elements (J)ij = +,(xi) ,  i ,  j = 1 to n ; W is a diagonal matrix with 
elements ( W)ii = wiSij and J+ is the Hermitian conjugate of J. C is another n x n matrix 
with (C)ii = 1; k(xi ,  y)t+bj(y) dy and Gi = g ( x i ) .  

We may also write equation (7) as: 

[l, +E:-A(B+E:)]& = p  +S,  (9) 
in analogy with equation (6), with E :  and E :  being n x n matrices and S, a vector in C". 
From equation (8) E :  = J'WJ- l,, E: = J+WC-B and 6, = J + W G  -p .  

By virtue of the rapid convergence of the quadrature formula, one has that 
limn+w ll~,ll,, = lim llr& = limn+w ~ ~ S n ~ ~ , ,  = 0. To show this, for example, 1 

Thus limn+w IleAll,, = 0. Similar demonstrations can be used for Ilefll,, and IlS,ll,,. We have 
the following lemma. 

Lemma 1 .  For sufficiently large n, J' W is invertible. 

Proof. From equations (8) and (9) J'WJ= 1, +E!,. Since IIEXiln 2 0 from result 1, 
(1, + E ! , ) - '  exists for n so large as Ile:lln < 1. Right inverse of J+W = J ( l n  for 
J' WJ(I,, = I,. Since J+W is a square matrix, ~ ( 1 "   SE:)-^ 
is its left inverse also. 

= (I,, + E ! , ) ( I ,  

Theorem 1. If ( 2 )  has a solution f in H, K is compact and x k ,  k = 1 to n, are the roots of a 
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'reasonable' quadrature formula, then for sufficiently large n, the set of equations given 
by ( 5 )  has a solution fP, and l\f-fPll+ 0. 

Proof. For a given E > O  let n be so large as 

n-m 

( a )  (4) has a solution and that I l f  -f; /<& ; 
( b )  l l ( l , , -hB)- ' (~~-A€~) l l~  < 1 and [la -&I[,, < + E ;  

We know that (2) can be satisfied (Mikhlin 1964). Existence of (l,,-AB)-' is 
implied by ( a ) .  The first part of ( b )  can be satisfied by observing that ((( l,,-AB)-'~~,, has 
a bounded limit and IlekII,, and Il~ill,, converge to zero. This implies that (9) has a solution 
CU. The second part of ( b )  can now be obtained by using result 3. We can obtain (c) by 
observing, again, that limn-.m / E &  = 0. Thus n can be increased until ( a ) ,  ( b )  and ( c )  
are all satisfied. 

(c) Ileklln < 1.  

Now one has that 

It is now obvious that [I f  -ET= &i+j'i(l < E .  

From lemma 1 and (c), (J+ W)-' exists. Multiplying both sides of (9) by (J'W)-' one 
has that (9) is identical with (5) with (Y replacing&. Thus the set of equations given by (5) 
has a solution for sufficiently large n and Ilf -fill < E .  

From the proof of the theorem it is clear that whenever BG is applicable and the roots 
of a reasonable numerical quadrature formula are available, then cv is also applicable. 
In particular, the domain of integration in (1) can be enlarged to infinitely large intervals 
and several dimensions, as long as the operator K defined by the kernal is compact. 

In the following we give a few examples where cv can prove useful in solving an 
equation which, as such, is not a Fredholm equation of the second kind but is reducible 
to one. 

3. Applications 

For the first application, let 

(T+Alf=  g (10) 
be defined in Hwhere T is a symmetric operator bounded below by a positive constant, 
and T-'A is compact in H. Define a scalar product: [U [U] = (U [Tu) for each U, U in D(T)  
and complete D ( T )  with respect to this scalar product. Thus, one obtains a complete 
Hilbert space Ho. Equation (10) reduces to the form of (2) in Ho and can be solved by 
BG. It is now easy to check that (10) can also be solved by cv: i.e. f can be 
approximated by Xy= where 

" 

A useful example of an equation of the form of (10) is the Sturm-Liouville equation 
which can be solved by cv. 

As another application we show that the problem of potential scattering can be 
treated by cv. In fact our interest in the method was motivated from this problem, for 
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the application of the Schwinger variational method is tedious and other methods 
attempted proved unsatisfactory. 

For the purpose of illustration we consider the Lippman-Schwinger equation for a 
partial wave: 

where Go is the free-state function, 4 the scattering-state standing-wavefunction, GO is 
the principal part of the free-particle Green function, U > 0 is the interacting potential 
and z is the potential strength which could be positive or negative. If o is free from a 
long-range tail and from strong singularities then (12) can be cast in H = L 2 ( R + )  as 
follows. Let f = (Jv )$ ,  g = (Ju)$o and K = (Ju)Go(Ju). f, g are in H and K is a 
compact operator on H (Scadron et a1 1964). By multiplying both sides of (12) with J u  
one has that 

$ = $o-zGov$ (12) 

(1 +zK)f = g (13a) 
and the tangent t of the phase shift is given by 

(13a) can be solved by BG which is equivalent with the Schwinger variational 
method (Holt and Santoso 1973, Singh and Stauffer 1974). From the theorem it can 
also be solved by cv; i.e. by solving 

implies that Ilf-Zy=l z-'t. Here ri 
could be taken to be the roots of the Gauss-Legendre quadrature formula. Now let {qi} 
be a set such that { (Ju)$~} is a basis in H. Then (14) can be written as: 

~ 0 ,  and hence z-lt,, = -(glZy=l ( ~ ~ 4 ~ )  

and t,, is given by 
" r m  

z-lt,, = aj J I(lo(r)u(r)$j(r) dr. 
j = l  0 

Since u(r i )>  0 for each i, (15a) reduces to 

Thus, t can be approximated by t,, which can be obtained by solving (16). 
In the foregoing analysis we considered the case of an interaction of a definite sign. 

However, the procedure remains unmodified when U is indefinite, other conditions on it 
remaining the same. In that case U can be partitioned as v =ACA, where A is an 
invertible operator and C i s  bounded (Kato 1966), and one definesf =A$, g = and 
K = A G d C .  It is easy to check now that one still has to solve (16) and obtain f,, from 
(156). 

It is worth pointing out here that the convergence of the Schwinger variational 
method has as yet been established only for interactions of a definite sign (Singh and 
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Stauffer 1974,1975). Attempts at proving the convergence of this method to solve (12) 
with indefinite v runs into trouble because of the appearance of C. However, a slight 
modification of the method can be used to obtain a solution. In that case one should use 
A explicitly in calculation and solve (13a) directly. Although no significant complica- 
tions result because of this modification, the method is still as tedious as the Schwinger 
method for a U of a definite sign. On the other hand cv requires no modification in the 
computation procedure. In addition, cv can be used to evaluate the scattering 
amplitude. In that case one encounters multiple integrals in (16) and {r i}  has to be 
replaced by {(r)i} .  

4. Discussion 

We have shown that a simple method, the collocation variational method, is capable of 
handling the Fredholm integral equations of the second kind and some other equations 
related to it. The computational simplicity of the method indicates that it can be 
usefully employed to solve equations which are otherwise treated by the collocation 
method, or by the Bubnov-Galerkin method. In particular the method appears to be 
promising in solving the Lippman-Schwinger equation. This equation can be solved 
also by the Schwinger variational method, by the Kohn variational method or the 
collocation method. The rate of convergence of the collocation method is very slow. 
Although the Kohn method computationally is quite easy, convergence results known 
about the method are rather unsatisfactory (Singh and Stauffer 1974, Nuttal 1969). On 
the other hand the Schwinger method, or its modification presented in the present 
article, is computationally difficult. Thus, the present method has several advantages 
over the other methods used to solve potential scattering problems. 
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